TEPLATOR: Nuclear District Heating Solution

Radek Skoda

University of West Bohemia
Czech Institute of Informatics, Robotics and Cybernetics, CTU
Czech Republic
Radek.Skoda@gmail.com

Anna Fortova, David Masata, Jiri Zavorka, Martin Lovecky, Jan Skarohlid, Frantisek Kolar, Eva Vilimova, Tomas Peltan, Ondrej Burian, Jana Jirickova
University of West Bohemia
Czech Institute of Informatics, Robotics and Cybernetics, CTU

ABSTRACT

The innovative concept for district and process heat production is presented using already irradiated nuclear fuel from commercial light water power reactors where this fuel is not burnt up to its regulatory and design limits.

The TEPLATOR is a critical assembly derived by the state of the art computational tools using better moderation, more optimal fuel lattice pitch, lower fuel temperature, lower coolant pressure for producing commercial heat with a cost of less than 4 EUR/GJ. Investment cost for building the TEPLATOR district heating station is below 30M EUR (for both using prices of 2019). Based on different district heating needs, different TEPLATOR variants are proposed; using either used BWR, PWR or VVER irradiated fuel assemblies (FAs). TEPLATOR can also be operated with fresh fuel if the stockpile of irradiated FAs is exhausted.

TEPLATOR DEMO variant (a.k.a. DEMO) is a 50 MWt district heating plant using 55 FAs from VVER- 440, producing 98 °C hot water. DEMO is coupled to a thermal storage system allowing shaving off morning and evening district heating peaks. DEMO coolant is used at atmospheric pressure, the system has three loops, three main circulation pumps, three heat exchangers and heat generation is regulated by standard control mechanisms. TEPLATOR variants using BWR and PWR square lattice fuel were also considered using different core configurations though. The engineering constraints show potential for a higher output (< 250 MWt) and/or higher temperatures (< 200 °C) as customers require.

The TEPLATOR solutions is especially suitable for countries that have thousands FAs stored either in interim storage casks or spent fuel pools. These FAs are now financial liability which, once used for heat production, can turn into a sizeable financial asset.
1 INTRODUCTION

The TEPLATOR is an innovative concept for future district and process heat production. The TEPLATOR facility will use already irradiated FAs from conventional light waters reactor (which are not burnt up to its regulatory and design limits, are structurally sound and comply with regulatory requirements). In order to harvest additional energy from already used FAs, the TEPLATOR is a critical assembly derived by the state-of-the-art computational tools using better moderation, more optimal fuel lattice pitch, lower fuel temperature and lower coolant pressure. Different TEPLATOR variants are proposed; using different light water reactors (LWR) irradiated fuel assemblies with output power range between 50 and 200 MW(t) and temperatures above 150 °C. The initial TEPLATOR “DEMO” shown here operates at 50 MW(t) and 98 °C with irradiated VVER440 fuel.

The TEPLATOR is designed for clean district heating energy production for cities with 100 000 or more inhabitants. It may replace the out-dated conventional heating plants based on fossil fuels. The TEPLATOR will produce heat without any emissions and with negligible fuel costs. TEPLATOR solutions are especially suitable for countries that have thousands LWR FAs stored either in interim storage casks or spent fuel pools. These FAs are now financial liability which, once used for heat production, can turn into a sizeable financial asset. The calculated investments cost for the first DEMO 50 MWt facility is 30 M EUR. Then the final price of produced heat is 4 EUR/GJ (using prices of 2019).

2 TEPLATOR - GENERAL IDEA

The design philosophy is to use only proven, known, verified, and tested high Technology Readiness Level (TRL) components. The design resembles the 50 year old WR1 reactor design [5] using different (i.e., spent LWR) fuel though. This ensures low investments costs and low risks. The design itself includes 3 circuits. The primary circuit includes a so-called calandria, a core with the spent LWR fuel FAs, three heat exchangers and three pumps. The core is made from vertical Zr channels in which the spent fuel is inserted. The space between the channels is filled by the moderator, heavy water. The coolant flows in all channels, through a system of pipes to the collector. Three pipes are led out of this collector, each of which is led into a separate heat exchanger. The coolant passes through the primary side of the heat exchanger and returns to the fuel channels through the pump and the lower distribution chamber. A secondary or intermediate circuit transfers the heat from the primary circuit to the district heating circuit. The secondary circuit heat transfer fluid (HTF) could either be water or another fluid (based on the operating parameters). The intermediate circuit includes two storage tanks connected to the circuit serving as an energy storage system for shaving off demand peaks. These storage tanks are also able to simultaneously dissipate and store heat from the residual power of the fuel, i.e. the intermediate tanks are designed to be able to absorb decay heat of the core in Design Basis Accidents.
The tertiary or district heating circuit, which distribute the heat to the end customer, is therefore separated from the core by two sets of heat exchangers. Even though the atmospheric pressure DEMO is designed to operate at 98 °C, the TEPLATOR variants using higher pressure (up to 2 MPa) and/or a different coolant (e.g., 70% Monsanto OS84 + 30% Radiolytic Tars [6]) can be derived for various district heating applications for temperatures above 150 °C.

Table 1: Project parameters of TEPLATOR DEMO [4]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology developer, country of origin</td>
<td>UWB Pilsen & CIIRC CTU Prague Consortium, Czechia</td>
</tr>
<tr>
<td>Reactor type</td>
<td>Channels in Reactor Vessel</td>
</tr>
<tr>
<td>Coolant/moderator</td>
<td>Heavy Water (D$_2$O) / Heavy Water (D$_2$O)</td>
</tr>
<tr>
<td>Thermal/electrical capacity, MW(t)/MW(e)</td>
<td>50 / does not produce electricity</td>
</tr>
<tr>
<td>Primary circulation</td>
<td>Forced circulation</td>
</tr>
<tr>
<td>NSSS Operating Pressure (primary/secondary), MPa</td>
<td>Ambient/Ambient</td>
</tr>
<tr>
<td>Core Inlet/Outlet Coolant Temperature (°C)</td>
<td>45 / 98</td>
</tr>
<tr>
<td>Fuel type/assembly array</td>
<td>VVER-440 / hexagonal with 126 fuel pins</td>
</tr>
<tr>
<td>Number of fuel assemblies</td>
<td>55</td>
</tr>
<tr>
<td>Fuel enrichment (%)</td>
<td>Spent fuel (< 1.2 wt% U-235 equivalent)</td>
</tr>
<tr>
<td>Core Discharge Burnup (GWh/ton)</td>
<td>2.3</td>
</tr>
<tr>
<td>Refuelling Cycle (months)</td>
<td>10 months with online option</td>
</tr>
<tr>
<td>Reactivity control mechanism</td>
<td>Moderator height, Control blades</td>
</tr>
<tr>
<td>Approach to safety systems</td>
<td>Inherent and passive safety with built-in decay heat sink</td>
</tr>
<tr>
<td>Design life (years)</td>
<td>60</td>
</tr>
<tr>
<td>Plant footprint (m2)</td>
<td>≤ 2 000</td>
</tr>
<tr>
<td>RPV height/diameter (m)</td>
<td>6.5 / 3.7</td>
</tr>
<tr>
<td>RPV weight (metric ton)</td>
<td>Transportable by all standard means</td>
</tr>
<tr>
<td>Seismic Design (SSE)</td>
<td>0.3g</td>
</tr>
<tr>
<td>Fuel cycle requirements / Approach</td>
<td>LEU - reuse of LWR spent FAs, possibility to run on fresh SEU (≤1.2% U235)</td>
</tr>
<tr>
<td>Distinguishing features</td>
<td>District heating zero CO$_2$ source with zero fuel cost, low pressure.</td>
</tr>
<tr>
<td>Design status</td>
<td>Conceptual design</td>
</tr>
</tbody>
</table>
The general 3D model of TEPLATOR DEMO primary circuit is shown in Figure 1:

![Figure 1: TEPLATOR DEMO primary circuit [2]](image)

3 DESIGN CONCEPTS

The schematic description of a basic thermal design can be found below. All three circuits are shown there and also the energy storage circuit with a heat accumulator. Obviously, the TEPLATOR operating parameters (e.g., temperature, cycle length) are driven by the district heating client demands.

![Figure 2: Basic thermal diagram [3]](image)
The TEPLATOR core consists of equally spaced channels filled with spent nuclear fuel from LWR reactors [1]. More customization options are possible, the initial DEMO (98 °C and atmospheric pressure) reuses of VVER-440 spent nuclear fuel. In that case, totally 55 fuel assemblies are placed in large-pitched hexagonal array. Typical VVER-440 spent nuclear fuel had 3.6 wt% U-235 initial enrichment, 35 GWd/ton average burnup and 30 years of cooling. Alternative use of slightly enriched fresh fuel (< 1.2 wt% U-235) is possible. Each fuel assembly is placed in a coolant tube filled with heavy water or alternatives for temperatures up to 98 °C. Atmospheric pressure of heavy water moderator eliminates the need for a thick and expensive pressure vessel. The TEPLATOR is a heat generator with typical operation up to 10 months each year (typical heating season) with an option to be refuelled online.

Two independent reactivity control systems are deployed. Reactivity control under normal operation is achieved by changes in moderator level in the reactor pool. Safety-shutdown system is based on three borated steel blades that can be dropped in the core. Due to the low temperatures, relatively short cycle and use of spent fuel the excess reactivity is quite small.

The DEMO internals consist of the fuel channels, channel outlets, absorber blades, absorber blades drive mechanism, I&C systems, reflector and bottom collector. Through the bottom collector the coolant (heavy water) is distributed back to individual channels. The calandria is a stainless-steel vessel, since the TEPLATOR works on low pressure, it does not need to be very thick. The space between fuel channels and calandria is filled with heavy water which serves as a moderator, the total volume of heavy water in calandria is around 30 m3. The core is surrounded by a graphite reflector.

The primary coolant (D$_2$O for DEMO) enters the core with the temperature of 45 °C. It flows through the fuel channel and then it leaves the individual channels at 98 °C at the channel outlet. This outlet is attached to the collector where the primary coolant is collected. From the collector the coolant is distributed to the three heat exchangers where it heats the secondary heat transfer fluid (HTF). The primary coolant flows through the pump, then through the pipe on the inside of the calandria to the bottom collector where it is distributed again to the individual channels. Roughly 20 m3 of D$_2$O is required in the primary circuit and all effort is made to minimise the amount of valuable D$_2$O.

The DEMO is a three-loop design, thus it has three primary heat exchangers (HE) to transfer the heat from the primary to the secondary circuit. The heat exchanger is a horizontal type with U-shaped tubes and water-water heat exchange. Each of the HE has a heat transfer surface about 520 m2 and is capable, under forced circulation, of cooling the DEMO core on its own: decay heat under emergency conditions can be safely removed by HE to the energy storage tanks using natural circulation.

As the DEMO operates at rather low temperature (i.e., <100 °C), suitable only for some district heating applications, counter flow heat exchanges with minimal temperature losses are required. If the district heating application requires a higher temperature, either an additional reheating is required (e.g., natural gas) or a higher pressure/different coolant TEPLATOR variant must be deployed.
As the DEMO operates under ambient pressure, the function of a PWR pressurizer is replaced by a volume compensator attached to the primary circuit. The compensator is linked to the heavy water management systems.

The secondary circuit is an intermediate loop that separates the primary circuit and the tertiary circuit while transferring heat from the primary to the third circuit. The secondary circuit consists of the secondary side of primary heat exchangers (HE I) and the primary side of secondary heat exchangers (HE II). As part of this circuit the energy storage system, consisting of two tanks, can be connected having identical heat transfer fluid (HTF) as the secondary HTF. This energy storage system is based on thermal energy storage (TES) heat mechanism which serves several purposes: 1) DEMO power fluctuations, 2) compensation and smoothing of the demand curve and 3) emergency and safety heat sink.

4 SAFETY FEATURES

The TEPLATOR operating conditions (e.g., fuel/coolant temperature, pressure, linear heat rate) are much lower than those for which the used FAs were certified and used in LWRs. The safety features establish defence-in-depth against radiological hazards. Hence, the TEPLATOR leverages the inherent safety characteristics of the basic LWR reactor design and supplements them with passive and active safety features that emphasizes improvements in safety [2].

The TEPLATOR secondary circuit provides large volumes of fluid that are available to provide cooling to the core in the event of accidents, including by passive means.

The TEPLATOR places all reactivity devices in low-temperature, low-pressure moderator, eliminating pressure-driven ejection of reactivity devices from the design. The separation of moderator from coolant also provides two separate heat removal means in the event of accidents and ensures that moderator temperature feedback to the core physics is negligible in normal operation.

The TEPLATOR has two separate shutdown systems. These are two fully-capable fast-acting means of shutdown for use at the third level of defence in depth, fully independent of each other.

4.1 Decay Heat Removal System and Emergency Core Cooling System

Decay heat removal system is integrated as the energy storage system interconnected to the secondary circuit. During TEPLATOR shut down, heat generated in the core is transported by natural circulation inside the cooling loops. This heat is removed in the primary heat exchanger using thermal energy storage (TES) [3]. The TES system consists of two tanks, a ‘cold’ and a ‘hot’ one. In order to remove decay heat from the TEPLATOR, heat transfer fluid (HTF) from the cold tank flows via natural convection through the secondary side of the primary heat exchanger (HE I) to the hot tank. HTF for DEMO is light water, for higher temperature TEPLATOR designs a higher parameter HTF must be
considered. The volume of both tanks is designed to be sufficient enough for removing decay heat for long enough that the auxiliary cooler dissipates the heat.

4.2 Containment System

The TEPLATOR containment system includes a reinforced concrete containment structure (the reactor building) with a reinforced concrete dome and an internal steel liner, access airlocks, equipment hatch, building air coolers for pressure reduction, and a containment isolation system.

5 PLANT LAYOUT ARRANGEMENT

As the TEPLATOR DEMO facility is more than just a reactor itself, the plan layout is illustrated below.

The TEPLATOR facility consists of one main structure which further contains nuclear and non-nuclear sectors/buildings. Nuclear sectors are the main TEPLATOR hall, the fuel handling building, and the auxiliary nuclear building. Non-nuclear sectors are the heat exchanger hall and the auxiliary building. Other buildings and structures within the facility layout are a heat accumulator, water storage tanks, auxiliary cooling towers with a pumping station, transformers of power supply and backup diesel generators. Heating / Chilling Supply system is located in the heating exchanger hall next to the main TEPLATOR hall.

6 DESIGN AND LICENSING STATUS

The TEPLATOR DEMO project completed its preconceptual design and the works on preliminary/basic design will start in the Q4 of 2020. The commercial demonstration unit with thermal power of 50 MW is in the preliminary phase. The preliminary phase includes the feasibility study, the site location selection and obtaining the license for construction. Once the feasibility study is done and the site location is approved, the environmental impact assessment report will be carried out and will be
submitted to the regulatory authorities.

7 FUEL CYCLE APPROACH

The unique feature of TEPLATOR is the reuse of spent nuclear fuel from commercial LWRs which is normally considered a waste. This can be achieved due to significantly lower operation parameters (far from regulatory limits) when compared to the conditions in large LWRs. Based on heating or cooling demand, the core can be operated up to 10 months each year with subsequent refuelling of fuel assemblies. Online refuelling is optional as well as usage of fresh SEU assemblies. When removed from the core, reused fuel will be stored and cooled in the fuel handling building and thereafter transported back to the original spent fuel storage.

8 CONCLUSION

The TEPLATOR is an innovative way of district heating which uses already spent LWR nuclear fuel. Before the full scale TEPLATOR can be built, the demonstration unit needs to be designed, certified and built. Hence, the demonstration TEPLATOR unit presented here ("DEMO") has rather modest parameters and operates at 50 MWt with 98 °C output. After a careful optimization of physical parameters, minimizing the volume of heavy water, the first steps in the constructional design were taken and the first 3D model of DEMO was obtained. Cost-wise the TEPLATOR concept seems well competitive with natural gas and can help improving ecological use of spent nuclear fuel.

ACKNOWLEDGMENTS

Research and Development has been funded by the project TK02030069 Energy Storage.

REFERENCE:

[5] Le réacteur de recherche WR-1 https://www.cns-snc.ca/media/history/wr-1/wr-1_1.html